Package: hettx 0.1.3
hettx: Fisherian and Neymanian Methods for Detecting and Measuring Treatment Effect Variation
Implements methods developed by Ding, Feller, and Miratrix (2016) <doi:10.1111/rssb.12124> <arxiv:1412.5000>, and Ding, Feller, and Miratrix (2018) <doi:10.1080/01621459.2017.1407322> <arxiv:1605.06566> for testing whether there is unexplained variation in treatment effects across observations, and for characterizing the extent of the explained and unexplained variation in treatment effects. The package includes wrapper functions implementing the proposed methods, as well as helper functions for analyzing and visualizing the results of the test.
Authors:
hettx_0.1.3.tar.gz
hettx_0.1.3.zip(r-4.5)hettx_0.1.3.zip(r-4.4)hettx_0.1.3.zip(r-4.3)
hettx_0.1.3.tgz(r-4.5-any)hettx_0.1.3.tgz(r-4.4-any)hettx_0.1.3.tgz(r-4.3-any)
hettx_0.1.3.tar.gz(r-4.5-noble)hettx_0.1.3.tar.gz(r-4.4-noble)
hettx_0.1.3.tgz(r-4.4-emscripten)hettx_0.1.3.tgz(r-4.3-emscripten)
hettx.pdf |hettx.html✨
hettx/json (API)
# Install 'hettx' in R: |
install.packages('hettx', repos = c('https://bfifield.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/bfifield/hettx/issues
- Penn46_ascii - Sample data set
- ToyData - Toy data set
Last updated 2 years agofrom:fe19452cd9. Checks:9 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 11 2025 |
R-4.5-win | OK | Mar 11 2025 |
R-4.5-mac | OK | Mar 11 2025 |
R-4.5-linux | OK | Mar 11 2025 |
R-4.4-win | OK | Mar 11 2025 |
R-4.4-mac | OK | Mar 11 2025 |
R-4.4-linux | OK | Mar 11 2025 |
R-4.3-win | OK | Mar 11 2025 |
R-4.3-mac | OK | Mar 11 2025 |
Exports:detect_idiosyncraticestimate_systematicget.p.valueKS.statmake.linear.datamake.quadradic.datamake.randomized.compliance.datmake.randomized.datmake.skew.dataR2rq.statrq.stat.cond.covrq.stat.uncond.covSESKS.pool.tSKS.statSKS.stat.covSKS.stat.cov.poolSKS.stat.cov.rqSKS.stat.int.covSKS.stat.int.cov.pooltest.stat.infovariance.ratio.testWSKS.t
Dependencies:clicodetoolscolorspacecpp11doParalleldplyrfansifarverforeachformula.toolsgenericsggplot2gluegtableisobanditeratorslabelinglatticelifecyclemagrittrMASSMatrixMatrixModelsmgcvmomentsmunsellmvtnormnlmeoperator.toolspillarpkgconfigplyrpurrrquantregR6RColorBrewerRcpprlangscalesSparseMstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithr
detect_idiosyncratic() Tutorial
Rendered fromdetect_idiosyncratic_vignette.Rmd
usingknitr::rmarkdown
on Mar 11 2025.Last update: 2023-02-16
Started: 2019-01-21
Tutorial on Systematic Treatment Detection
Rendered fromestimate_systematic_vignette.Rmd
usingknitr::rmarkdown
on Mar 11 2025.Last update: 2019-02-08
Started: 2019-01-21